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Abstract 

This paper explores the issues surrounding plagiarism, a form of malpractice 
defined as cheating by collusion, by copying, by memorisation or by using previous 
candidates’ work in LanguageCert Writing Tests. The paper first provides an 
overview of the area with a discussion of how and why plagiarism is becoming 
more of a problem in this digital age, and a categorisation of the different types of 
plagiarism that are prevalent. An overview of statistical and computational 
methods used to detect similarity in texts follows, together with a brief 
description of some of the most common tools to detect similarity in texts. 

The paper then describes LanguageCert’s similarity detection tool SiD, which has 
been developed by PeopleCert for focused in-house scrutiny of all incoming 
scripts. To illustrate how SiD operates, and to provide a snapshot of the metric for 
determining similarity, exemplars of similarity at different levels of severity are 
then provided. 

In 2023, a corpus was created of all computer-delivered LanguageCert examination 
Writing Test scripts dating back to 2020. All computer-delivered Writing Test 
scripts are now passed through SiD, which examines them for similarity against the 
background corpus, as well as continually expanding the corpus in real time. All 
scripts, above a predetermined threshold of similarity, are scrutinised in order to 
determine whether malpractice has taken place. 

The Writing Test similarity detector is just one of the tools in LanguageCert’s 
toolbox by which it ensures fairness and integrity in its examinations. 

Keywords: similarity detection, cheating, writing tests, cosine similarity algorithm, 
Myers O(ND) algorithm 

Background to Cheating with Particular Reference to Plagiarism 

Cheating in examinations, including English language examinations, is a significant 
issue not only in academia but in classrooms around the world. With the English 
language becoming increasingly important for global communication, 
qualifications and visas for work and study purposes, the issue of cheating in 
English language examinations has come very much to the attention of assessment 
bodies and regulators. A brief overview of the literature on cheating and in 
particular plagiarism in English language examinations follows. 

Many studies have investigated the issue of cheating in examinations. Whitley 
(1998) in his review of over 100 studies reported a number of reasons why 
students cheat on exams ranging from the importance of success, to the need for 
approval, to expected performance. 

In a more recent large-scale survey, McCabe et al. (2012) reported that 
approximately 64% of students admitted to cheating on tests, while 58% admitted 
to some form of plagiarism. So’ud (2016) in a study of college of education 
students in the Sudan, reported that 100% of their interviewees admitted – for 
various reasons – to cheating in English language examinations. Wan and Li (2006) 
reported more than 60% of college students cheated at times, and about 10% 
cheated in examinations. 

Using a variety of evidential sources, Huang & Garner (2009) reported a 
comparatively high level of cheating on the College English Test. 
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Digital content has seen a massive growth in recent years, and the internet has 
undoubtedly contributed to the prevalence of cheating in English language 
examinations. The ease of access to information and the ability to copy and paste 
from the internet has made it easier for students to be able to cheat 
(Noorbehbahani et al.,2022). While it has been argued that many students may not 
understand the concept of plagiarism and may not be aware of the consequences 
(Park, 2003), the fact is that cheating on examinations, on English language 
examinations, and on high-stakes English language examinations in particular, is at 
an all-time high, and on the increase (Iqbal et al., 2021). 

To guard against cheating and malpractice, LanguageCert has a rigorous set of test 
security principles related to online-delivered assessments (see: 
https://passport.peoplecert.org/docs/OLP_Exams_Candidate_Guidelines_Windows
.pdf). Many of the security features echo those presented in Foster’s (2013). To 
exemplify, upon first log-on, candidates need to follow a thorough ‘onboarding’ 
process; this includes an ID check, locking down their computer, checking there are 
no second monitors, and a room check through their webcam to show that the 
room is secure and that no other person or aids are present (see Coniam et al., 
2021).  

Types of Plagiarism 

An array of different types of plagiarism are reported, both intentional and 
unintentional; see e.g., Bin-Habtoor & Zaher, 2012; Chowdhury & Bhattacharyya, 
2018; Maurer, 2006. 

These different types of plagiarism are summarised below. 

1. Copy-and-paste plagiarism. This is when a writer copies text from a source and 
pastes it into their own work without giving credit to the original author. 

2. Verbatim plagiarism. This is when a writer copies text from a source word-for-
word without giving credit to the original author. 

3. Paraphrasing plagiarism. This occurs when a writer rephrases ideas or words 
without giving credit to the original author. 

4. Self-plagiarism. This happens when a writer submits work that they have 
previously published without indicating that it has been published before. 

5. Mosaic plagiarism. This is when a writer uses a combination of copied and 
original material in their work without properly citing the copied material. 

6. Accidental plagiarism. This occurs when a writer inadvertently uses someone 
else's work or ideas without realising it, often due to a lack of understanding of 
proper citation practices. 

7. Structural Plagiarism. This involves taking another person’s ideas, sequence of 
arguments, selection of quotations from other sources, or even the footnotes 
that may have been used without giving due credit. Such plagiarism is not 
always easy to identify, as both texts have to be carefully scrutinised to identify 
similarities. 

In the context of English language exams, types 1-3 are likely to be most prevalent 
and memorization is likely to play a role. 
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Statistical and Computational Methods Used to Detect Similarity 

Over the past two decades, a considerable number of methods – which have also 
resulted in the development of an array of different plagiarism-checking tools – 
have been developed to identify similarity, or plagiarism; see e.g., Bin-Habtoor & 
Zaher, 2012; Chowdhury & Bhattacharyya, 2018; Maurer, 2006, who report on, 
review and evaluate such methods and tools. 

A broad summary of the key methods is listed below. 

1. Linguistic analysis. In this method, the language used in a text is analysed to 
identify patterns or characteristics – involving possible inconsistencies in 
writing style, vocabulary, and grammar – that may be suggestive of 
plagiarism (Pecorari, 2008). 

2. Database comparison. In this method, texts are compared to a database of 
existing documents to identify matches or similarities. The database may be 
populated with previously published works, student papers, or any other 
relevant text that may be used for comparison (Si, et al., 1997). 

3. Citation analysis. In this more academically-grounded method, citations in a 
text are analysed to determine if they are properly formatted and if they 
refer to valid sources. Citation analysis can also detect cases of self-
plagiarism, where a writer submits work that they have previously published 
without proper citation (Mazov et al., 2016). 

4. Stylometric analysis. In this method, the writing style of a text is analysed 
with a view to identifying patterns or characteristics – through changes in 
writing style or vocabulary – that may indicate plagiarism (Stein, et al., 2011). 

5. Machine learning. In this method, machine learning algorithms are trained to 
detect plagiarism by analysing patterns and similarities in text. These 
algorithms use statistical models to identify similarities between documents 
and can be trained to recognize specific patterns or characteristics of 
plagiarism (Hunt et al., 2019). 

6. Text similarity analysis. In this method, the text in two or more documents 
are compared to determine their level of similarity via algorithms which do 
string comparisons invoking mathematical functions. Among such 
algorithms are the Rabin-Karp and Jaro-Winkler distance algorithms 
(Leonardo and Hansun, 2017); the Levenshtein distance algorithm (Su et al., 
2008); and the Smith-Waterman algorithm (Irving, 2004). Analysis is 
grounded on the basis that plagiarised text is likely to be similar or identical 
to the original source, with the algorithms producing output which reports 
the degree of similarity (see Vijaymeena & Kavitha (2016) for a summary of 
common algorithms). 

As will be apparent from the detail presented below on the LanguageCert 
similarity detection tool, the approach adopted by LanguageCert, may be seen to 
be placed under method 6 above: text similarity analysis. 
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Similarity Detection Software Tools 

As with other methods of detection, a number of software tools using different 
statistical and computational methods have been developed in an attempt to 
identify similarity, or plagiarism, in texts. 

Bin-Habtoor & Zaher (2012) list 15 plagiarism detection tools. Naik et al. (2015) list 
over 30 tools. Heres & Hage (2017) compare nine tools. Chowdhury & 
Bhattacharyya (2018) present a survey of 31 tools, although they do not evaluate 
them. Mansoor & Al-Tamimi (2022) report on over 12 tools. 

Summarising some of the various sources mentioned above, some of the key 
current software tools for detecting plagiarism are: 

Turnitin is one of the most widely used pieces of similarity detection software 
(e.g., Meo & Talha, 2019). It uses a database of published works, student papers, 
and other sources to compare submitted documents for similarity. Turnitin 
provides a similarity score and highlights potential instances of plagiarism. 

Plagiarism Detector X is a desktop application that can scan text documents for 
plagiarism. It uses a variety of algorithms, including text similarity analysis and 
database comparison, to detect plagiarism. 

Grammarly is a popular writing assistant tool that can detect potential instances 
of plagiarism. It uses machine learning algorithms to analyse text and identify 
similarities to other documents. 

Copyscape is an online tool that can scan web pages for plagiarism. It compares 
submitted text to a database of indexed web pages to identify potential instances 
of plagiarism. 

Ephorus is a plagiarism detection tool used by educational institutions. It uses text 
similarity analysis to compare submitted documents to a database of published 
works and student papers. 

Urkund is a plagiarism detection tool that can scan text documents for plagiarism. 
It uses a combination of text similarity analysis, database comparison, and citation 
analysis to identify potential instances of plagiarism. 

SafeAssign is a plagiarism detection tool integrated into the Blackboard learning 
management system. It compares submitted documents to a database of 
published works, student papers, and other sources to identify potential instances 
of plagiarism. 

 

The conclusion as to which software program or online tool is the best for 
detecting plagiarism depends on several factors, including the type of document 
being analysed, the type of plagiarism being investigated, and the resources 
available for analysis. Different tools use different algorithms and techniques to 
detect plagiarism, and their effectiveness can vary depending on the specific 
situation.  
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LanguageCert has developed tools to automatically check the written text 
responses produced by candidates taking its English language exams. As an 
international English language exam board, operating all over the world and in 
different time zones the scope for cheating is significant. It is worth reiterating 
that checking written text is only one of the checks that need to take place to 
guard against cheating. 

Plagiarism in English language exams may take a number of forms, as mentioned 
above. A serious form of plagiarism, or cheating, that LanguageCert needs to 
detect involves essays which are significantly similar if not identical being 
submitted by different candidates.  

The LanguageCert focus rests initially on an in-house solution, relevant to scripts 
produced for LanguageCert tests, in response to set prompts. Against this 
backdrop, the in-house similarity detector, SiD, has been developed which rates all 
input scripts for similarity against an existing corpus of past candidate scripts. The 
section below briefly outlines the LanguageCert tool. 

Background to Exploring Similarity in Texts 

While the thrust of the current paper involves a broad picture of the development 
and operation of the LanguageCert similarity detector, some background technical 
detail is necessary. This section outlines, in lay terms as far as possible, some of the 
programming detail which underpins the operation of the tool. 

The majority of the coding conducted in-house has been done in Python. This is an 
open-source computer programming language which consists of open-source 
libraries. Various of these libraries have been drawn upon in the three procedures 
outlined below. 

In analysing candidate scripts with a view to detecting similarity, the LanguageCert 
Similarity Detector – SiD – involves three core procedures. These are:  

1. Vectorisation, i.e., converting the words in a text into numbers. 

2. Measuring the similarity between vectors. 

3. Qualitatively examining the output by highlighting similarities and 
differences between pairs of texts. 

Procedures (1) and (2) form the core of the analysis. Procedure (3) can be viewed 
as the front end, where visualisations of similarities between scripts are presented 
to the end user. The sections below outline these procedures in the context of 
current implementations. Following this, procedures directly relevant to the 
construction and operation of the LanguageCert tool SiD are provided.  
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Text Vectorisation 

Before any comparison of texts may be conducted, the words in all texts need to 
be vectorised; that is, the words need to be converted into numerical 
representations which a software program can then meaningfully analyse. Egger 
(2022) presents a summary of different word (or “term-based”) vectorisation 
techniques, with some of the most well-known described below. 

The Term Frequency - Inverse Dense Frequency (TF-IDF) technique computes the 
importance a word in a document or corpus by comparing the frequency of the 
word in the document to its frequency across the entire corpus. It does not directly 
capture the meaning of the word, as it only takes into account its occurrence in the 
document or corpus (Ramos, 2003; Wang et al., 2020). 

The Hashing Vectorizer is a vectorisation technique that is commonly used in 
natural language processing. It works by generating a fixed-length numerical 
representation of text data using a hashing function. Unlike other vectorisation 
techniques such as TF-IDF, it does not require the building of a dictionary or 
vocabulary (Idouglid and Tkatek, 2023).  

Word2Vec is a predictive neural-based word embedding model that learns to 
represent words in a continuous vector space based on their contextual usage in a 
large corpus of text (Mikolov et al., 2013). 

One of the most frequently used vectorisation techniques is the TF-IDF technique 
referred to above (Ramos, 2003); it is this procedure that is used in the 
LanguageCert tool. TF-IDF was chosen because of its simplicity, its interpretability 
and its scalability. 

Measuring Similarity Between Vectors 

Once words have been vectorised, an algorithm is then required to measure the 
similarity between vectors. Some of the most common algorithms are outlined 
below. 

The Cosine Similarity method measures the level of similarity between two vectors. 
It does this by calculating the cosine value of the angle between the two vectors, 
where the vectors are numerical representations of words in a document or a 
corpus (Connor, 2016). 

The Manhattan Distance method computes the sum of the absolute differences or 
the absolute values of the differences between the corresponding dimensions or 
coordinates of the two points (Eugene, 1987). 

The Jaccard similarity coefficient computes the relationship between words in two 
strings in terms of which words are shared and which are distinct (Diana and Ulfa, 
2019). 

The Dice coefficient defines the relationship between words in two strings as two 
times the number of terms which are common in the compared strings, divided by 
the total number of terms present in both strings (Küppers and Conrad, 2012). 
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Different researchers advocate different algorithms but the method adopted by 
LanguageCert in its similarity detector is the Cosine Similarity method. The method 
was selected because it has been referred to as “standard” in similarity detection 
(Connor, 2016), and has been proven to be robust by a number of researchers 
(Saptono et al., 2018; Indriyanto and Sumitra, 2019; Davoodifard, 2022). 

Identifying and Highlighting Differences in Scripts 

Having measured the similarity between two vectors, the final step finding the 
differences or similarities between two pieces of text and highlighting the 
changes. This is the front end which is presented to users. Some of the most 
common difference (or ‘diff’) algorithms which do this are outlined below. 

The Myers O(ND) difference algorithm works with textual strings. It calculates the 
best “diffeprence” between two strings, which means finding the most concise 
sequence of ‘edits’ or changes to each text, such that string 1 is converted into 
string 2 (Myers, 1986).  

Patience and Histogram algorithms enhance the Myers algorithm in certain ways to 
improve efficiency or performance (see Nugroho et al., 2020). 

The Bentley-McIlroy algorithm operates using blocks of characters rather than 
single characters, as in Myers’ algorithm (see Chang et al., 2008). 

Although developed 40 years ago and enhanced over time (see e.g., Sjölund, 2021), 
Myers’ algorithm is still widely used as a general-purpose difference detection 
tool, and is used to highlight the differences between two scripts. It is this 
algorithm, surrounded by a layer of pre-diff speedups and post-diff cleanups, that 
the LanguageCert similarity detector currently uses.  

The LanguageCert Similarity Detector SiD 

As outlined above, the LanguageCert similarity detector (SiD) has been built 
following, to a large extent, well-researched best practice. Scripts input to the 
system are first converted into numbers using the TF-IDF technique. The Cosine 
Similarity algorithm is then invoked, which measures the level of similarity by 
calculating the cosine value between the two vectors. Myers' algorithm is then 
used to calculate and highlight the differences between two scripts.  

The principal difference between the Cosine Similarity method and the Myers 
algorithm is that the Cosine Similarity is a measure of similarity between two texts 
which are represented as vectors without considering the relative position of 
words in these texts. Myers’ algorithm is the front end which identifies the 
smallest set of insertions and deletions needed to ‘transform’ one sequence into 
the other. Appendix 1 outlines how texts which have a very high similarity score 
may be seen to appear qualitatively different in appearance. 

The three-step operation outlined above represents the current operational state 
of the similarity detector. Following implementation and feedback from end users, 
it may be the case that the final procedure – highlighting textual similarities – may 
be performed by an algorithm other than the Myers’, which is the procedure 
currently being implemented. The core operations performed by the TF-IDF 
technique and the Cosine Similarity algorithm which define the similarity score 
however, will not change. 
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The following section outlines the operation of the LanguageCert similarity 
detector, SiD. 

SiD in Practice 

The system described below was implemented in 2022, and operationally affects 
all scripts coming in to the system on an ongoing, daily, basis. 

A subcorpus exists for each prompt at each CEFR level. As new Writing Test 
prompts are created – which happens on a frequent and regular basis – new 
subcorpora are created to accompany the new prompts. 

As scripts are input to the system, they are sorted and allocated to a specific 
subcorpus on the basis of CEFR level and question, i.e., prompt. All candidates have 
a unique identifier, so multiple takes of an examination, even responses to the 
same prompt, can be identified and traced. 

A script which enters the appropriate subcorpus is then compared against every 
script that exists in the subcorpus. This means that any given script will be 
compared against thousands of other scripts, with a similarity score (derived from 
the Cosine Similarity algorithm) calculated for every script analysed.  

Interpreting SiD’s Output 

This section presents examples of scripts from different candidates outlining 
degrees of similarity at various percentiles. Appendix 1 provides examples of how 
similar, yet apparently different, texts appear as pairs of scripts. Actual output will 
contain two scripts (the left-hand script being “Script 1” and the right-hand script 
“Script 2”) presented horizontally, side by side. Any given pair of scripts need to be 
viewed in the context of Script 2 being ‘derived’ from Script 1, with coloured 
highlighting as outlined below.  

• Green text in Script 2 indicates text which appears in Script 2 but not in Script 1.  

• Red text in Script 1 indicates text which when ‘deleted’ from Script 1 may be 
seen to result in the text observed in Script 2. This may involve words and 
phrases in Script 1 being ‘left out’, ‘substituted’ or ‘re-arranged’ in Script 2.  

• White text indicates text which is the same in both scripts. The more white text 
there is, the more similar the two scripts will tend to be. 

Consider Figure 1 below which is extracted from Figure 4 further down this 
section. The figure contains the first line from two high-similarity scripts. Apart 
from some minor differences, the two lines will be seen to be almost exactly the 
same. 

For readability’s sake, the lines have been enlarged, with Script 2 appearing 
beneath Script 1.  
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Figure 1: One comparable line from two similar texts 

Script 1 
 

Script 2 
 

 

The first word in Script 1 is “Hey”; in Script 2, it is “Dear”. 

The second word in Script 1 is “Johnsons”. In Script 2, the second word is 
“Johnson”, the “s” on the word “Johnson” in Script 2 having been ‘removed’. 

Further along the line, “hear” in Script 1 appears as “here” in Script 2. 

The preponderance of white text in the two extracts in Figure 1 underscores the 
high similarity between the two texts. 

Appendix 1, as mentioned, provides examples of what similar, yet apparently 
different, texts might look like in terms of ‘deletions’ in one text (Script 1) and 
‘insertions’ in another (Script 2).  

As Appendix 1 illustrates, two scripts can visually contain a comparatively large 
amount of red and green highlights (indicating potential differences) alongside a 
very high similarity score. Therefore, because of the large number of differences, 
generally, in the context of an examiner scrutinising two scripts which have an 
extremely high similarity score (above 0.9, say), the more red and green text there 
is, and the less white text, the lower will be the degree of similarity between the 
two scripts, and the less likelihood of cheating having occurred. For an examiner 
looking at two scripts with a preponderance of white text, a warning sign of 
potential malpractice is flagged, and the scripts concerned are then forwarded for 
more detailed investigation. 

To give a flavour of the procedure in practice, and the type of output provided to a 
scrutinising examiner, some exemplar pairs of scripts exhibiting different levels of 
similarity are presented below. 

One issue regarding the occurrence of similarity rests on the extent to which 
candidates reuse, or incorporate, detail from the prompt. Such recycling of given 
text is very much the case at lower CEFR levels (A1 to B1). Although recycling is 
less prevalent at B2 and above, a certain amount of reuse of given words and 
phrases still exists. 

Figure 2 presents two scripts with a 0.90 similarity. 

Figure 2: 0.90 similarity 
Script 1 Script 2 

 
 

Apart from minimal changes such as place and person names and a couple of other 
minor differences, Script 2 is essentially the same as Script 1. 
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Figure 3 presents two scripts with 0.80 similarity. 

Figure 3: 0.80 similarity 
Script 1 Script 2 

 
 

While there is a high degree of similarity between the two scripts, there are 
notable differences. 

Figure 4 presents two scripts with 0.70 similarity. 

Figure 4: 0.70 similarity 
Script 1 Script 2 

 
 

The broad structure of the two scripts is comparable and hence the comparatively 
high degree of similarity at 0.70. There is more originality in Script 2, however, 
compared with the two 0.80 similarity scripts above. 

Figure 5 presents two scripts with 0.60 similarity. 

Figure 5: 0.60 similarity 
Script 1 Script 2 

 
 

At 0.60 similarity, the greater degree of originality in Script 2 is becoming 
apparent. There is much less white text. 

Figure 6 presents two scripts with 0.50 similarity. 

Figure 6: 0.50 similarity 
Script 1 Script 2 

 
 

At 0.50 similarity, the degree of difference between the two scripts extends, 
although there is still some similarity – as in the two scripts above due in part to 
the recycling of words from the prompt. 
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Conclusion 

This paper has presented a picture of how LanguageCert approaches and engages 
with the issue of similarity – potential cheating – in LanguageCert Writing Tests. 
The paper has outlined the working of the LanguageCert similarity detector SiD in 
terms of how the system processes scripts within the system, and the type of 
output that is provided.  

The identification of textual similarity and differences have been presented from 
two complementary perspectives – the Cosine Similarity method and Myers’ O(ND) 
difference algorithm respectively. These metrics generate output which provides a 
baseline quality check in terms of potential malpractice. 

As the current paper illustrates, LanguageCert takes the issues of cheating or 
malpractice extremely seriously. Ways in which LanguageCert does this have been 
illustrated above. It is clear from the illustrations that the issue of similarity / 
cheating / plagiarism must be tackled strenuously and continuously. The 
LanguageCert similarity detector outlined in this paper represents but one 
element in LanguageCert’s striving to maintain honesty, integrity and fairness in 
LanguageCert’s English language examinations.  
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Appendix 1: Categorising Similarity yet Difference in Texts 

Example 1: Both texts exactly the same. Similarity score 1.0 

 
 

Example 2: Changing the order of one sentence. Similarity score 1.0 

 
 

Example 3: Changing the order of two sentences. Similarity score 1.0 

 
 

Example 4: Changing the order of all sentences. Similarity score 1.0 

 
s 

Example 5: Making typos: “favoritemonth” instead of “favorite month”.  
Similarity score 0.81 

 
“Favoritemonth“ and “ favorite month “ are considered two different words, by the 
scoring algorithm that is why the score changes 
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